02 آذر 1403
logo

مرکز تحقیقات اختلالات تنفسی حین خواب

دانشگاه علوم پزشکی تهران

  • تاریخ انتشار : 1402/11/11 - 12:47
  • تعداد بازدید : 117
  • زمان مطالعه : کمتر از یک دقیقه

EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms

عکس {faces}
Title: EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms
۴
استنادات
Author(s): Zangeneh Soroush, M., Tahvilian, P., Nasirpour, M.H., (...), Ghazizadeh, A., Jafarnia Dabanloo, N.
Published/Type: 2022 (2022-8-24), Fetched: Dec 8, 2023 20:39:23 / Original Article
Journal: Frontiers in Physiology13,910368
Abstract:
article has an altmetric score of 1
Altmetrics 
Blind source separation (BSS) methods have received a great deal of attention in electroencephalogram (EEG) artifact elimination as they are routine and standard signal processing tools to remove artifacts and reserve desired neural information. On the other hand, a classifier should follow BSS methods to automatically identify artifactual sources and remove them in the following steps. In addition, removing all detected artifactual components leads to loss of information since some desired information...
Collaborations:
View at:  
  • Article_DOI :
  • نویسندگان : khosro sadeghniiat-haghighi ,morteza zangeneh soroush ,mohammad hossein nasirpour ,zeinab abdollahi
  • گروه خبر : کارشناس مقاله,مقالات,مقالات انگلیسی
  • کد خبر : 259161
کلمات کلیدی
زهرا زارعی
تهیه کننده:

زهرا زارعی

متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه